¿Qué es la parábola? Diferentes configuraciones y características

Parábola es un término usado para designar una narración que enseña algo complejo, asumiendo un carácter bíblico. También es una figura geométrica.

Parábola es un término usado para referirse a una narración que pretende enseñar algo complejo. En este sentido, una parábola utiliza alegorías para transmitir una lección moral, como es el caso de las historias bíblicas.

Sin embargo, las parábolas se usan mucho en la literatura oriental, y son relatos cargados de cierto simbolismo. En ese sentido, los elementos de la historia tienen algún significado específico, y siempre traen lecciones de vida.

Para las matemáticas , la parábola es una figura muy utilizada en geometría analítica y consiste en una curva plana, simétrica y abierta. Así, en la parábola, los puntos están a la misma distancia del foco (fijos) y de la directriz (otra recta).

Parábola: definición bíblica

¿Qué es una parábola? En algún momento debemos haber escuchado las historias de Jesucristo en la Biblia. Estas historias, sin embargo, fueron contadas en forma de parábola, que no es más que una historia contada para enseñar algo complejo.

Jesucristo usó parábolas para hablar a sus discípulos.

Al ser una historia que ilustra una enseñanza, Jesús contó varias parábolas para enseñar el evangelio a sus discípulos y transmitir el mensaje que quería, dondequiera que estuviese. Entre los más conocidos están el hijo pródigo y el buen samaritano.

El primero cuenta la historia de un padre que tuvo dos hijos que siguieron caminos diferentes. El segundo cuenta la historia de un samaritano que ayudó a un herido, mientras que todos los demás que lo vieron no hicieron nada.

Sin embargo, Jesús los usó porque eran fáciles de recordar y siempre usaba un lenguaje fácil de entender para la gente. Como enseñó mucho a sus discípulos, y muchos de ellos trabajaban en el campo, Jesús usó el trabajo agrícola como ejemplo en varias historias.

contexto matemático

En contexto matemático, una parábola es una figura geométrica plana . En este sentido, es el conjunto de puntos donde la distancia a cualquier recta es la misma distancia a otro punto distinto.

En este sentido, teniendo en cuenta un punto F y una recta r en el plano cartesiano , el conjunto de puntos comprendido entre F y la recta r se conoce como parábola. Por tanto, el punto F se denomina foco y no debe confundirse con ninguno de los puntos de la recta r.

Cerebralmente.

Sin embargo, su representación geométrica se utiliza en funciones de segundo grado, en los contenidos que se imparten en la escuela primaria. Ya en el bachillerato, la parábola está presente en Geometría Analítica.

Elementos de la parábola

Hay cinco elementos de una parábola:

  • Foco – sin embargo, es el punto utilizado para definir una parábola
  • Directriz : está representada por la recta numérica, utilizada para determinar una parábola.
  • Parámetro : sin embargo, representa la distancia entre el foco y la directriz.
  • Vértice : es el punto más cercano a la directriz. Sin embargo, la distancia entre el vértice y el foco representa la mitad del parámetro.
  • Eje de simetría : sin embargo, es la línea perpendicular a la directriz, que pasa por el vértice.
Elementos de la parábola.

Ecuación

Cuando el vértice se sitúa en el origen del plano cartesiano se obtienen dos ecuaciones reducidas:

y² = 2px

Y

x² = 2py

Entonces, ¿qué te pareció el artículo? Si te gustó, lee también: Historia de Jesús – Quién fue, biografía, crucifixión, muerte y resurrección .